skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kostelnik, Jaime"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Predicting where runoff‐generated debris flows might occur during rainfall on steep, recently burned terrain is challenging. Studies of mass‐movement processes in unburned areas indicate that event locations are well‐predicted by rainfall anomaly,R*, in which peak observed rainfall is normalized by local rainfall climatology. Here, we use remote and field methods to map debris flows triggered within the 2020 Dolan Fire burn area in coastal California, demonstrate that a short‐durationR*metric predicts debris‐flow occurrence more effectively than absolute peak intensity or longer‐duration rainfall metrics, and show that incorporating anR*criterion into an existing debris‐flow likelihood model can reduce false positive predictions and improve accuracy. We testR* at three other climatically distinct fires in California, demonstrating its utility for mapping likely debris‐flow locations in different climates. We also consider howR*can benefit postfire debris‐flow prediction given recent increases in climatological variability within individual burn perimeters. 
    more » « less
    Free, publicly-accessible full text available August 28, 2026